
N87-26535
PHASE SPACE SIMULATION OF COLLISIONLESS STELLAR

SYSTEMS ON THF_ MASSIVELY PARALLEL PROCESSOR

Richard L. White

Space Telescope Science Institute
Baltimore, MD

ABSTRACT

A numerical technique for solving the colli-
sionless Boltzmann equation describing the time
evolution of a self-gravitating fluid in phase space
has been implemented on the Massively Parallel
Processor (MPP). The code performs calculations
for a two dimensional phase space grid (with one
space and one velocity dimension). Some results
from calculations are presented.

The execution speed of the code is compa-
rable to the speed of a single processor of a
Cray-XMP. Advantages and disadvantages of the
MPP architecture for this type of problem are
discussed. The nearest-neighbor connectivity of
the MPP array does not pose a significant obsta-
cle. Future MPP-like machines should have much

more local memory and easier access to staging
memory and disks in order to be effectS.re for this
type of problem.

Keywords: Stellar Dynamics, Phase Space, Gal-
axies, Star Clusters, Parallel Processing, N-body
Techniques

INTRODUCTION

The dynamics of gravitating systems are of
great interest because of their application to many
astronomical systems such as clusters of stars, gal-
axies, and clusters of galaxies. These problems
have two important characteristics which make
them ideal for study using a parallel computer.
First, the fundamental physics governing the evo-
lution of the system is both simple and well-
known: the force between any pair of bodies in
the system is just determined by Newton's law of
gravitation. Second, this simple law must be ap-
plied very many times during the course of each
time step, and all of the force calculations could
in principle be performed in parallel.

N-body Methods

Unfortunately, direct N-body methods, in
which the force between every pair of bodies is

calculated in each step, are not practical for large
stellar systems such as galaxies. Galaxies have so
many stars that the gravitational potential is very
smooth, and gravitational encounters between in-
dividual stars are rare. Consequently, such sys-
tems are described as collisionless. The actual

number of stars is far too large for direct N-body
simulation (N _ 1011), and computations with
feasible values of N (_ 104) produce many more
2-body encounters (collisions) than occur in the
real systems.

Most studies of the dynamics of collisionless
.^,, ,........ .3 a modified ,,r L_ J.._v-uuuy tech-
nique in which the density distribution is binned
and smoothed before calculating the gravitational
potential (e.g., Ref. 1). The calculation can then
include many more particles than direct N-body
simulations (N _ 105), and 2-body encounters
are prevented because the potential is smoothed.
Even this method, however, suffers from graini-
ness due to the finite number of particles in each
zone; this graininess manifests itself as a numer-
ical "noise" in the calculation. It also limits the

resolution which is achievable with a given num-
ber of particles. Another problem is that it is
necessary to use a "softened" gravitation poten-
tial instead of the real 1/r potential to avoid seri-
ous instabilities. Sellwood (Ref. 1) has shown that
this significantly changes even the linear behavior
of the system.

Phase Space Methods

Numerical noise can be eliminated if the stel-

lar system is treated as a fluid in phase space.
The evolution of such a system is described by
the collisionless Boltzmann equation. A Japanese
group has done some calculations using this ap-
proach (Refs. 2-5). Their results are very inter-
esting and indicate that the numerical noise in

the N-body methods may have led to spurious
results. For example, Nishida (Ref. 5) found that
the bar instability of a thin stellar disk can be
suppressed by the presence of a small bulge com-
ponent; previous N-body calculations had led to

29

i:_i'_:,L_EDINGPAGE BLANK NOT FILMED

the opposite conclusion, apparently because their
resolution was inadequate.

This paper reports on the implementation

on the Massively Parallel Processor (MPP) of a
new numerical technique for phase space tech-
niques. The technique is briefly described, some
results are presented, the MPP implementation is
discussed, and some improvements are suggested
for future MPP-like machines which would make

them more effective for this type of problem.

THE NUMERICAL TECHNIQUE

The numerical method described here was

developed by the author and P. R. Woodward
(Refs. 6, 7). Phase space is divided into an Eu-
lerian (fixed) grid. This grid is two-dimensional
(2-D) for spherical systems without angular mo-
mentum, 3-D for spherical systems with angular
momentum, or 4-D for disk systems. The grid
need not be rectangular; for the disk problem, for
example, a polar grid can be used. For each zone
of the grid, we store the mean density in the zone
and all the first order moments in the phase space
coordinates. Thus, for a 2-D grid, there are 3 mo-
ments: the mean density, the x-moment, and the
v-moment. The moments in a zone imply a unique
distribution of density within that zone which is
linear in all coordinates. For a 2-D grid, the den-
sity is f(x, v) --- (f) -'1-fzx -_ fur, where If) is the
mean density and fz and fv are proportional to
the x and v moments.

A version of this scheme using second order
moments has also been implemented; however,
this scheme requires much more memory than the
linear scheme, especially for higher dimensional
problems. The limited memory of the MPP made
it desirable to use only linear moments.

A time step consists of calculating new val-
ues for the moments in each zone. The x and

v motion is split into two half steps; by taking
steps in the order x-v-v-x, second order accuracy
in the time step is achieved. Fluxes of each mo-
ment across the zone boundaries are computed
from the acceleration and velocity of material in
the zone. The moments are updated using the
fluxes so that mass and momentum are conserved

during the time step.

RESULTS OF CALCULATIONS

The figures show the results for two calcula-

tions of the gravitational collapse of a l-D, spa-

3O

tially periodic system consisting of infinite sheets
of stars. For both examples, the spatial period
is 10 Jeans lengths, the mean space density is 1,
the Gaussian velocity dispersion is 1, and the 2-D
phase space grid is 128 x 128.

The initial conditions differ for the two exam-

ples. The example in Figure 1 has a density per-

turbation of the form $p = A cos 2_rx/L, where
L is the length of the grid and A = 0.01. The

example in Figure 2 has *p = A[cos(2rx/L)+
3 cos(6_rx/L)].

The figures display the evolution of the sys-
tem with time. One spatial period is shown in
each figure. For each time, a contour plot of the
phase space density is shown, with velocity on the
vertical scale and position on the horizontal scale.

The contours are logarithmically spaced.

At the beginning of the calculation, the ma-
terial is concentrated near zero velocity and is
almost uniformly distributed in space. The ini-
tial perturbation causes material to feel a gravi-
tational acceleration toward the center. This in-

creases (decreases) the velocity of material to the

left (right) of center, so that it moves up (down)
in the figure. The higher velocity material then
moves toward the center, which leads to the wind-
ing up of the original phase space distribution.
As time passes, the original material becomes so
tightly wound that it is no long resolved by the
grid; it then appears smooth.

These two calculations reveal the interesting
feature that the final phase space density distri-
bution is not identical for the two collapses, so
that there is some _memory" of the initial per-
turbation. This is of interest in understanding
the formation and evolution of galaxies; it hints
that buried in the present-day structure of galax-
ies there may still be information about the con-
ditions under which galaxies were formed.

IMPLEMENTATION ON THE MPP

The implementation of this numerical scheme
on the MPP is relatively straightforward. The 2
dimensional phase space grid is mapped directly
to the 128 × 128 array of processors in the MPP,
with one zone per processing element. The near-
est neighbor connectivity of the MPP is precisely
what is required for the flux-based method de-

scribed above. The programmable boundary con-
ditions for the MPP array allow the boundaries
of most problems to be treated easily.

Time= 0.00 Step= 0 Time= 4.00 Step= 288

15.
E $ e- rbz y 5. m '

2: + 9 4

fg -15. fa
$ -25. .ow -la 2%
2" -35.

S m
E* -5.
8" 8" as V2

E N 4-

ai
V I W

a i
VIW

'0'

Time= 6 0 0 Step= 432
35. 35.

25. 25.

15. 15.
E E k

P 2 2

x'
-15. -15. 88

5. + 5. $i4
O N +" C N -5.

8"
V2

ai

8" -5.

ai
W W VIW

-25.

-35.
5-

3 -25.

-35.
'0'

-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Time= 1000 Step= 720 Time= 1400 Step= 1008
35.

25.

15.

5.

E e -

se

V2

a i

R 2 b.0

$4

3s -15. io0
26

-14 a%

'0" -35.

> >
C - 0"

40
C N -5.
8"
W 3

ai

2% -25.
(OW VIW

'0"

-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Time= 50 00 Step= 3588
35. 35.

25. 25.

15. 15.
e E

kZ

2%

V 3 e"

5. ;y 5. :&

-5. ;; -5. a::

32
-15. a 0

a- > $8 >

8"
V2

ai

- l N

VIM

-15.

-25. :$ -25.

-35. -35.

$8 V I W

-15
2' '0"

-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Figure 1. Evolution of phase space density for Example 1 (see text for details).

31

The MPP architecture is very effective for
problems like the one described here which require
intensive floating point computations. The MPP

is divided into a scalar processing unit (_he MCU)
and a parallel processing array; the M_U places
requests for array operations into a call queue.
The time for a floating point add or multiply in
the array is long compared to any computations
which must be formed in the MCU; consequently,
the MCU keeps the call queue full, and the array
is working continuously. The array-side code con-
sists of primitives which can (in principal) be fully
optimized; the user code resides in the MCU and
need not be optimized at all except in its orga-
nization of calls to the array, because the execu-
tion time of the MCU code has negligible effect on
the total MPP time required for the calculation.
The net effect of all this is that execution time on

the MPP is very close to what one would calcu-
late from simply counting the number of floating
point operations and multiplying by the time per
operation.

Performance of the MPP Code

The execution speed of the MPP code is
about 50 times faster than a VAX 86G0. This is

comparable to the speed of the same method on a
single processor of a Cray-XMP/48, even though
the much greater vector length of the MPP (16384
versus 64) requires about 5 times more multiplies
than the Cray within the inner loop. For a grid
with uniform spacing_ at each time step there are
many coefficients which need be calculated only
once for each row of the grid. In the Cray ver-
sion of the codes the short vector length allows
these coefficients to be calculated outside the in-

ner loop, but on the MPP the coefficients must
be re-calculated for every zone. This greatly in-
creases the number of operations within the in-
ner loop, so that even though the MPP can per-
form more multiplies per second than the Cray,
the speeds of the machines are similar for this
scheme.

For a problem using a grid with non-uniform
spacing, the MPP program would be faster than
the Cray by a factor of 3 or more, because nearly
all the calculations would have to be performed
within the loop by both the Cray and the MPP.

It appears that a 3 or 4 dimensional phase
space calculation will also run several times faster
on the MPP than on a Cray. However, higher
dimensional problems require much more memory

32

than is available within the MPP array. They can
be implemented on the MPP if some limitations
which currently exist can be alleviated.

Limitations of the MPP

The code development time was much greater
on the MPP than on the Cray, and the MPP pro-

gram is more difficult to modify (e.g., to use grids
larger or smaller than 128 × 128). This can be
attributed to limitations of the MPP which fall

into two classes: those which are determined by
the hardware (which probably cannot be fixed for
the current machine), and those which are deter-
mined by software (which can be fixed).

Hardware Limitations - Hardware limitations
of the MPP include:

(1) the lack of direct I/O facilities, and

(2) the severe shortage of local memory for each
processing element in the array.

The MPP is slowed significantly compared
to a Cray if many intermediate results must be
stored on disk. On the MPP, all input and output
(I/O) is performed through the front-end VAX.
The rate at which the VAX can respond to MPP
I/O requests is often the limiting factor in the per-
formance of the program. In contrast, the Cray

has dedicated, high speed disks so that the I/O
usually has little effect on the execution time for
the program.

Each node in the array has only 1024 bits of
local memory. Some of this memory is required
for the system, leaving room for about 25 32-bit
floating point numbers for all variables and tem-
porary storage. This local memory is so small
that it is difficult to implement a modestly com-
plicated algorithm such as the one discussed in
this paper. It is necessary for the programmer to
manage memory very carefully, with temporary
variables being constantly re-used within mod-
ules. This sort of coding is highly prone to er-
rors, and the resulting bugs are difficult to find
and eradicate.

Even using the staging memory, which con-
tains a much larger reservoir of storage, some al-
gorithms will be very inefficient. The need for nu-
merous temporary variables may force one to the
unpleasant prospect of having to roll temporary
variables in and out of staging memory frequently
during each time step.

Time= 0 0 0 Step= 0 Time= 4 0 0 Step= 288
35. 35.

25. 25.

15. 15.
E E e =

Sm"
9 - S"
- 3 - 3

a i

$2 5. i r

Hg -15. 3s

5.
2 $6 > $i

C O
..- -5. C l D -5.

-15.
PI W W m w

-25. 22 -25. :&
-If: 42

2- Lo* -35. -35.
-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Time= 6 0 0 Step= 432 Time= 8 00 Step= 576

25. 25.

15. 15.

5. i-o 5.

-5 . 0 0 -5.

E E e - E -

2 2
9" 9 0
V2 W 2

ni

L O

> g $4
C"

r"

fg
-15. Hs

-25. $? -25. 2:

-35. 2* -35.

-15.

W Y ni YIY

4: a*
2-

-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Time= 10 00 Step= 720 Time= 1 4 0 0 Step= 1008
35. 35.

25. 25.

15. 15.
E I e- 5. t B 5. i-0

2 $ > 5 i
28 a m

80 80
VS V S

P i

C- -5. C N -5.

3s -15. f g -15.

-25. m 5 -25. :;
2 s 4:

a i
O W Iow

2* -35. 2* -35.
-31. -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31.

Time= 50 00 Step= 3588
35. _ I I I , , I , , , , I 8 1 , , , I 35.

25.

15.

5.

-5.

-15.

-25.

-35.

2

-31 -21. -10. 0. 10. 21. 31. -31. -21. -10. 0. 10. 21. 31

Figure 2. Evolution of phase space density for Example 2 (see text for details).

33

Software Limitations - The hardware prob-
lems are exacerbated by shortcomings of the soft-
ware that currently exists on the MPP. Neither
disk I/O nor the staging memory are integrated
into the high-level language MPP Pascal, which
was used for the implementation of the phase
space method. The existing utility routines do
not make use of many of the hardware capabil-
ities of the MPP. For example, the hardware is
capable of transferring data to and from the stag-
ing memory in parallel with array operations and
with no interaction with the VAX; this is not im-
plemented in current high level routines.

Software limitations of the MPP Pascal com-

piler also make the shortage of local memory
harder to deal with. The compiler uses far too
many temporary locations in memory for any
reasonably complicated assignment s_atements.
Consequently, the programmer is requ'red to do
the compiler's job of breaking each equation down
into binary operations and managing the inter-
mediate results which are generated. This is an
error-prone process which would be much more
efficiently left to the compiler.

The local memory of the array is so small
(when used for floating point numbers) that it
might be best to view it as similar to the gen-
eral purpose registers in many scalar computers.
There are usually not enough registers to hold all
of one's data for the duration of the problem; in-
stead, the data is stored in main memory (staging
memory, for the MPP) and is brought in a piece at
a time for processing. In the MPP, approximately
four floating point multiplies can be performed in
the time required to move a 32-bit number from
the stager to the array; this is slow compared to
many scalar computers, but it still may be short
enough for the _register model" of array memory
to be viable. The time required for this transfer
becomes negligible if it can be carried out in par-
allel with array operations, as is permitted by the
hardware.

Requiring the programmer to manage these
data transfers on the MPP is equivalent to requir-
ing the programmer to write in assembly language
on a scalar machine. An advantage of treating
array memory as registers is that a great deal of
effort has been devoted to developing compilers
which make efficient use of registers. Many of the
techniques that have been developed for compilers
on scalar computers thus might be fruitfully ap-
plied to memory management on the MPP. This

would dramatically reduce the software develop-

34

ment time on the MPP.

FUTURE MPP-LIKE MACHINES

Future MPP-like machines should be orders
of magnitude faster than future short vector ma-

chines like the Cray. They will probably always
be more difficult to program than the Cray, but
the rewards for the effort will be great.

Many of the features of the current MPP are
beautifully suited to large numerical calculations
like the one described here. Such features should
be retained in future MPPs:

(1) The separation of the array and the scalar
processor allows very efficient use of the array,
as discussed above.

(2) The staging memory is an extremely useful
device which does much to compensate for the
nearest neighbor connectivity of the array. It
allows problems with more than 2 dimensions
to be handled effectively.

(3) Programmable boundary conditions for the
array allow the efficient treatment of many
problems. Some additional boundary condi-
tions might be useful (e.g., a twisted connec-
tion in which the top of the last column is

connected to the bottom of the first column.)

On the other hand, there are some aspects of
the MPP architecture that could definitely be im-
proved for this type of problem:

(1) The local memory needs to be much bigger.

(2) Some directly connected, high speed I/O de-
vices are needed. These should include direct

disk storage and an image display.

(3) As the array gets bigger, it will be important
to have faster ways to load data into it and
to shift data across it.

(4) Finally, the hardware is important, but the
accompanying software development must
not be forgotten.

Much of the current research in parallel com-
puter architectures is directed toward develop-
ing machines with more sophisticated connectiv-
ity than the MPP. Machines with butterfly or
hypercube connections allow easy communication
between any pair of processors. This is indeed
of critical importance for many algorithms, which
simply could not be implemented on the MPP.

For example, the most promising N-body meth-
ods organize the particles into a binary tree and
communicate information about masses and po-
sitions along the branches of the tree. The MPP
would be very poorly suited for such an algorithm.

On the other hand, the MPP is very well
suited to large numerical problems involving fluid
flow, in which the connectivity of the physics un-
derlying the calculation is usually local° It is also
efficient for image processing, the task for which
it was designed. It would be very premature to
conclude that the nearest neighbor architecture
of the MPP should be abandoned. The simplic-
ity and easy expandability of MPP-like arrays
should make such machines attractive as number-

crunching engines for the foreseeable future.

CONCLUSIONS

Phase space techniques have several advan-
tages over N-body calculations for collisionless
stellar systems: there is no need for a "soft-
ened" gravitational potential; there is no numeri-
cal noise; and the resolution can be made higher
by choosing the grid appropriately. It is also much
easier on machines like the MPP to implement
phase space fluid schemes than to implement effi-
cient N-body schemes.

Phase space techniques do have one signifi-
cant disadvantage compared to particle methods:

they require more computational time and mem-
ory for multi-dimensional problems. For example,
a 3-D problem requires a 6-D phase space calcu-
lation. Since most of phase space is empty, much
of the computing time in such a problem would
be wasted. By comparison, a particle calculation
represents the ultimate Lagrangean grid calcula-
tion: all of the computational effort is expended
where the matter is located.

The MPP is very well suited to fluid schemes,
though some suggestions for improvements in
hardware and software have been made. The

most important change for future MPPs would
be the addition of much more local memory for
each node.

REFERENCES

1. Sellwood, J. A. 1983, J. Comp. Phys., 50, 337.

2. Fujiwara, T. 1981, Pub. A. S. J., 33, 531.

3. Watanabe, Y., et al. 1981, Pub. A. S. J., 33,541.

4. Nishida, M. T., et al. 1981, Pub. A. S. J., 33,
567.

5. Nishida, M. T. 1986, Ap. J., 302, 611.

6. Woodward, P. R., and White, R. L. 1986,
J. Comp. Phys., in preparation.

7. White, R. L. 1986, in proceedings of the Prince-
ton meeting on The Use of Supercomputers in
Stellar Dynamics, ed. P. Hut.

35

